
On some inferences based on stratified forward
chaining: An application to e-Government

El-Hassan Bezzazi

IREENAT, University of Lille 2, France bezzazi@univ-lille2.fr

Summary. This paper introduces first an expert system shell based on stratified
forward chaining. The stratified forward chaining was proposed as a generalization
for the inheritance networks with exception since it allows more than one antecedent
in the premises part of a rule. Expert systems built with this tool are rule based
and the user interface is web based. The practical use of this chaining is presented
here through the three chaining methods: forward chaining, backward chaining and
mixed chaining. Our current aim is to make use of these inference mechanisms to
help the user in his interaction with administration to identify in an efficient way
the relevant information he needs. This is done through a question-response dialog
to determine the user profile. The paper considers also in a second part a special
kind of inference called deontic inference. The rationale behind this kind of inference
is the possible presence of deontic rules which may impose a change in the base of
current facts to make it comply with the obligations they prescribe.

1 Introduction

This paper is twofold. It introduces first an expert system shell whose in-
ference engine is based on stratified forward chaining presented in detail in
the paper [1]. The stratified forward chaining (hereafter sfc) was proposed as
a generalization for the inheritance networks with exception since it allows
more than one antecedent in the premises part of a rule. In [2] sfc was tuned
to what was called specific stratified forward chaining. Precisely, rules which
have more literals in their body are said to be more specific than those with
a subset of these literals in their body under some conditions. This way, more
specific rules can easily be added to the rulebase and will prevail over more
general ones in case they have conflicting conclusions. Expert systems built
with this tool are rule based and the user interface is web based. The chaining
sfc allows to manage the application of conflicting rules (i.e. those whose con-
clusions are opposed) according to the same intuition as the one in inheritance
networks and which is expressed by the rule of preemption [5]. The practical
use of sfc is presented through the three chaining methods: forward chaining,

2 El-Hassan Bezzazi

backward chaining and mixed chaining. Our current aim is to make use of
these inference mechanisms to help the user in his interaction with public ad-
ministration to identify in an efficient way the relevant information he needs.
For example, when a user apply for some administrative document, the sys-
tem would help him know the required documents [3]. This is done through
a question-response dialog to determine the user profile. This kind of dialog
exempts the user from spending time for extracting the relevant information
out of the general available documentation. On the other hand, the fact that
the user-system interaction is mainly based on yes/no questions makes it par-
ticularly well suited for mobile government, when using mobile phones which
have, in general, small screens. The GPL programming language PHP [4] was
used to implement the inference engines in our prototype. In its second part,
this paper considers also a special kind of inference built on sfc called deontic
inference. The rationale behind this kind of inference is the possible presence
of deontic rules which may impose a change in the base of current facts to
make it comply with the obligations they prescribe. The paper is organized
as follows. In section 2 we present the language used for knowledge represen-
tation and in a rather informal way the specific stratified forward chaining.
In sections 3 and 4 we define respectively the stratified backward chaining sbc
and the stratified mixed chaining smc which comply with sfc. An example of
dialog using smc. Section 5 begins the second part of this paper by introduc-
ing deontic rules and deontic inference as well as a measure to evaluate how
far or how close is a situation described by a set of literals to the ideal situ-
ation computed by deontic inference. In section 6 we discuss a more general
characterization for deontic inference. In section 7 we give some examples of
deontic rules and inferences.

2 Knowledge representation, Cautious union and specific
stratified forward chaining

A literal is an atom or an atom preceded by ! which represents negation, it
is then a negative literal . Currently, an atom is simply a symbol but atoms
with more structure such as comparisons could be easily incorporated in the
system. The shape of a rule is: l1 l2...ln > lm where l1 l2...ln and lm are liter-
als. Literals are separated by one space or more in the body of the rule and
the conclusion is a single literal.
A knowledge base is identified by a name and has a base of rules and a base
of facts.
The function lit identifies and puts in the set literals the literals which appear
in the knowledge base.
The function clean removes from a set of literals all opposing literals. The
function cu is a non commutative operation that carries out the cautious
union of two sets of literals by adding to the first set only those literals in the
second set which do not have their opposites in the first set and cleaning the

On some inferences based on stratified forward chaining 3

resulting set. Let L,L′ be two sets of literals. clean(L) = L−{l, !l : l, !l ∈ L′}
cu(L) = clean(L ∪ {l ∈ L′ :!l �∈ L})
The stratification of a rulebase is carried out by the function s. The strati-
fication mechanism consists in computing for each literal of the rulebase its
stratum. The stratum of a literal is, roughly speaking, the biggest number of
one-step forward chaining that infers it [1]. The stratum of a rule is the biggest
stratum of its body. Note that a stratified rulebase is necessarily acyclic when
thought of as a graph. We give, in what follows, an informal description for
this inference based on two partial orders ≺1 and ≺2. A rulebase is said to
be stratified by the mapping s : lit(R) −→ [1, n] if and only if for any rule
in R, l1, ., ln > lm we have s(li) < s(lm) and there is no other such map-
ping s′ : lit(R) −→ [1, n′] with n′ < n. This stratification induces a partial
ordering on R defined by r ≺1 r′ iff max(s(body(r)) < max(s(body(r′)). Let
≺2 be the partial ordering that specificity defines, r ≺2 r′ if and only if
body(r′) ⊆ body(r) and r �≺1 r′ . We combine these two orders to define a new
partial order ≺p as r ≺p r′ iff r ≺1 r′ and r′ �≺1 r . In other words, r ≺p r′

iff r ≺1 r′ and either r is more specific than r′ or they do not compare to
each other. Let ≺t be any total ordering on R which is consistent with ≺p ,
i.e, if r ≺p r′ then r ≺t r′ . Specific sfc inference, starting from a rulebase
R = r1, ..., rn with r1 ≺t ... ≺t rn and a set of initial facts L, proceeds as
follows: Among these totally ordered rules we look for the first rule r which
can be fired by L, i.e. such that body(r) ⊆ L. If such a rule does not exist, the
process is done, otherwise the process continues with the new totally ordered
rulebase R − {r} and the set of facts L ∪ {head(r)}. Notable properties for
sfc are, given two sets of literals L,L′:

• Non-monotony i.e., in general sfc(L) �⊆ sfc(L ∪ L′)
• L ⊆ sfc(L)
• If L is consistent then so is sfc(L)

The function sfc computes the literals inferred using stratified forward chain-
ing and retains at the same time the rules which were applied with relevance
in the inference, i.e. the rules which were applied and whose conclusion was
actually kept (and not rejected during the cautious union by the opposite
literal previously inferred). The relevant rules will help us define in the sequel
the stratified backward chaining.

3 Stratified Backward Chaining

Backward chaining is a bottom up method used in expert systems. It starts
with a literal called a goal to see, in case it is not an initial fact, if there
are rules that support it and so on for the literals in the body of these rules
which become sub-goals to be confirmed. The goal is confirmed when all the
ultimate sub-goals are among the initial facts. Because of the fact that this
method is goal-driven, it will not use all the rules that would have been used

4 El-Hassan Bezzazi

to check a given goal by forward chaining. However, attention must be paid to
possible cycles that may exist in the rulebase to guarantee the termination of
the process. Fortunately, this would never be the case as far as we are dealing
with stratified rulebases. This is the classical definition of backward chaining
with respect to classical forward chaining. The definition we are about to
give now of backward chaining which we will call stratified backward chaining
(sbc in short) is made with respect to sfc. Unlike the definition of classical
backward chaining which does not use forward chaining, sbc does use sfc.
Indeed sfc allows the selection of the relevant rules i.e. those which conclusions
are inferred with respect to sfc and the initial facts. Besides stratified backward
chaining uses two functions sbc and prove which are executed according to a
cross recursion (they call mutually each other). In fact, the function sbc selects
among the relevant rules those which are especially relevant for the goal being
processed.

Consider the following fragment of a rulebase which describe documents
required to apply for a passport. There is an exception which is stated in case
the application is made for a modification, fore example a new born child to
be added into the passport. In this case the stamp, denoted by doc 7, is no
more required.

passport_renewal > passport_application;

passport_modification > passport_application;

passport_application > documents;

documents > doc_1;

..

documents > doc_9;

passport_modification > !doc_7;

If we take as initial facts the only fact passport modification and as a
goal the fact doc 7, the classical backward chaining will conclude on a success
whereas we would rather like it to conclude on a failure in accordance with
sfc. The solution consists in checking before concluding on a success with the
classical backward chaining that the rules which made it possible to deduce
the goal are relevant for sfc.

function prove(list_of_goals)

{if (list_of_goals is empty) then return(true);

else if (sbc(head(list_of_goals)))

return(prove(tail(list_of_goals)));

else return(false);}

function sbc(goal,list_of_relevant_rules)

{if (goal in current_facts)) then success=true

else if (list_of_relevant_rules is empty) then success=false;

else if (goal!=conclusion(r)) then success=(sbc(goal,tail(list_of_rules)));

else {if (prove(premises(r))) then success=true;

else success=(sbc(goal,tail(list_of_rules)));

}

return(success)}

On some inferences based on stratified forward chaining 5

list of relevant rules is the set of relevant rules in the rulebase for sfc.
current facts stocks the facts entered by the user and which initially consti-
tute the fact base.

Proposition 1. Given a stratified rulebase, sbc(goal, 0) returns a success if
and only if goal ∈ sfc(current facts).

4 Stratified Mixed Chaining

Mixed chaining is an inference method using the forward chaining to infer new
facts and backward chaining to confirm facts possibly by questioning the user.
The stratified mixed chaining carried out by the function smc that we present
here combines the forward and backward stratified chaining. In general, it
works through a dialog with the user during its execution. The dialog relates
exclusively to the truth value of certain facts among the initial facts. It is
the function backward all which chooses the facts to be questioned on. The
function sfc is called in the treatment of the form submitted as the answer
to each question. It is interesting to notice here that the forms sent to the
user during this dialog save at the same time the execution environment of
the function smc. Indeed, the fact that the http protocol is stateless, the html
page sent to the user carries as hidden fields all the data necessary to save
the recursion context. Questions are put only about positive literals i.e. if it is
a negative literal on which the user must be questioned, the question will be
put rather on the opposite literal which then gives the answer for the literal
in question. The questioning to be sent to the user through an html form is
prepared by the function to ask user.

function smc(list_of_rules,goal)

{n=0;dialog=false;

while (n<number_of_rules and !dialog);

{r=list_of_rules[n];

if (conclusion(r)=goal)

if ((backward_all(premises(r)))) return(true);

n=n+1;

}

return(false);}

function backward_all(list_of_goals)

{dialog=false;

if (list_of_goals is empty) return(true);

else {fact=head(list_of_goals);

if (fact in result) return(backward_all(tail(list_of_goals));

else if (inverse(fact) in result) return(false);

else if (initial(fact) and not(asked(fact) or asked(inverse(fact))))

{to_ask_user(fact);sfc();dialog=true;}

else if(smc(fact)) return(backward_all(tail(list_of_goals)));

else return(false);}}

6 El-Hassan Bezzazi

number of rules is the number of rules in the rulebase.
dialog is a boolean variable used to simulate the mutual recursion between
the two functions.
result stocks the facts deduced with the function sfc.
initial returns true if the literal occurs only in the premises false otherwise.
asked returns true for a literal which the user was asked about its truth during
program running.

Proposition 2. Consider a session of smc which has concluded either on a
success or not and let answers denote the set of literals added to current facts
through the session dialogue by the user’s answers. Given a stratified rulebase,
smc(goal) returns a success if and only if goal ∈ sfc(current facts ∪ answers).

We give here an example of a dialog which the reader will be able to test
at the address: http://droit.univ-lille2.fr/eadministration/exp.php We give the
rulebase worked out starting from the government texts published in the web
site: http://vosdroits.service-public.fr/particuliers/N360.html. The rule

renewal out-of-date<2 childs childs<=4 > validity-5-years

must be read as follows. If the case is about a renewal of an out-of-date
passport since less than two years and that the children must be recorded
there and that their number is does not exeed four then the validity duration
of the passport will be of five years.

emergency > !stamp_60;

emergency > stamp_30;

emergency > validity_6_months;

emergency > documents;

renewal out_of_date<2 childs childs<=4 > documents;

renewal out_of_date<2 childs childs<=4 > docs_childs;

renewal out_of_date<2 childs childs<=4 > valid_5_years;

renewal out_of_date<2 childs !childs<=4 > documents;

renewal out_of_date<2 childs !childs<=4 > docs_childs;

renewal out_of_date<2 childs !childs<=4 > demand_elders;

renewal out_of_date<2 childs !childs<=4 > valid_5_years;

renewal out_of_date<2 !childs > documents;

renewal out_of_date<2 !childs > validity_10_years;

renewal !out_of_date<2 > first_demand;

modification > documents;

modification > !stamp_60;

modification > current_validity;

documents > form;

documents > 2_photos;

documents > stamp_60;

documents > proof_residence;

documents > identity;

On some inferences based on stratified forward chaining 7

The following rules are used to define the final facts among which the
inferred facts should be chosen for the answer.

form > goal; 2_photos > goal;

stamp_60 > goal; stamp_30 > goal;

proof_residence > goal;

identity > goal;

tablissement > goal; demand_elder > goal;

documents_childs > goal;

valid_10_years > goal; valid_5_years > goal;

valid_6_months > goal;

current_validity > goal;

An example of a session.

emergency ?

no

renewal ?

no

out_of_date<2 ?

yes

childs ?

yes

childs<4 ?

yes

The dialog will stop at this point and the system will conclude on the
following facts:

documents_childs valid_5_years form 2_photos

stamp_60 proof_residence identity

5 deontic rules

Deontic logic is a logic to reason about ideal and actual behavior [11]. Appli-
cations of deontic logic can go beyond legal analysis and legal automation to
cover other domains like the specification of security policies and fault toler-
ant systems [10]. Traditionally, this logic is developed as a modal logic with,
essentially, a modal operator o to define obligation which can be used in its
turn to define permission and prohibition. However Instead of using such an
operator and in order to stay at a propositional level, we enrich the language
by considering a new kind of literals which are intended, if inferred, to describe
an obligation to be respected. These literals, we shall call deontic literals, are
of the form o(l) or !o(l) where l is a descriptive literal, i.e. a literal defined
as in section 2. Let O be the set of deontic literals and LitD the set of oblig-
ated literals i.e. l ∈ LitD if and only if o(l) ∈ O. The function ω returns the
obligated literal of a deontic literal i.e. ω(o(l)) = l and the function o returns
the deontic literals of a set of literals, o(L) = L∩O. An operation of cautious

8 El-Hassan Bezzazi

union cu’ is defined for two sets of deontic literals LD, L′
D in the following

way. cu′(LD, L′
D) adds to the first set LD only those literals in L′

D which do
not have their opposites in the first set or which oblige a literal whose opposite
is obliged in LD.
A deontic rule is a rule where the body is made out of descriptive literals and
the conclusion is a deontic literal. Therefore, we shall deal from now on with
two kinds of rulebases: A descriptive rulebase R and a deontic rulebase D.
Note that the set of rules R∪D is stratified since R is stratified and the heads
of the newly added rules never occur in the rules body.

5.1 deontic inference and legal sets

Given a set of literals L, we define elementary deontic inference edi(L,R∪D) =
sfc(L,R ∪ D). In the sequel, we shall drop the parameter R ∪ D from both
edi(L,R ∪ D) and sfc(L,R ∪ D) in order not to encumber the notation.
The result of this inference is a set of literals L′ which may contain deontic
literals. A set of literals L is said to be legal or equivalently D-consistent
when sfc(L) does not contain a positive deontic literal which is violated by
one of its descriptive literals or conflicted by a contrary obligation: L is legal
if and only if o(l) ∈ L ⇒!l �∈ L ∧ o(!l) �∈ L. A set of literals which is not
legal is called illegal. inference from an illegal set L yields an illegal set L′

since L ⊂ L′. An elementary legalization λ(L) for L is an update of L by
replacing l with !l whenever l ∈ L and o(!l) ∈ sfc(L), in other words λ(L) =
cu(ω(o(sfc(L))), L).

The legalization of an illegal set L consists in a sucession of elementary
legalizations. In order to to be able to cumulate along this process the deontic
literals in accordance with their cautious union, we need to keep track of them.
{

λ(0)(L) = L,∆0 = ∅
λ(n+1)(L) = cu(ω(∆(n+1)), λ(n)(L)),∆(n+1) = cu′(∆(n), ω((o)(sfc(L))))

Since the set Lit of all literals is finite, the sequence {λ(n)(L)}n ∈ N is such
that there is necessarily an integer i s atisfying λ(i)(L) = λ(i′)(L) for some
i′ > i. Let k and k′ be the smallest integers satisfying λ(k)(L) = λ(k′)(L) with
k′ > k. Two cases are to be distinguished:
1) The case where k = k′ which means that the sequence {λ(n)(L)}n∈N is sta-
tionary. We define then the deontic inference of L to be di(L) = edi(λ(k)(L))
2) The case where k �= k′ which means that the sequence {λ(n)(L)}n∈N is
cyclic.
This will be considered as an inconsistency and the deontic inference is unde-
fined di(L) = ⊥. This means that the set of deontic rules D does not provide
the means for handling the case described by L.
Deontic inference defined this way incorporate defeasible reasoning thanks to
stratified forward chaining which operates at the descrive level as well as at the
deontic level. The issue of dealing with conflicting and conditional obligations
in deontic logic at the light of non-monotonic reasoning has been discussed

On some inferences based on stratified forward chaining 9

in several papers [6][8][9]. In particular, in [8] the author recommends the use
of an already existing non-monotonic and in [9], the author underlines the
difference between an obligation which is defeated and an obligation which is
violated. logic with a deontic logic instead of a built-in non-monotonic deontic
logic. The elementary legalization plays a crucial role in deontic inference. it
takes the deontic output of sfc and reuses it to correct the input, possibly al-
tering it by replacing some of its literals by their opposites, to make it comply
to the obligations of the rulebase. Making a difference between the declarative
statements and the norms is an approach already singled out in [7] where the
set of conditional norms is seen as a black box which transforms the input
into output following some basic rules.

5.2 Legality degrees

Let us consider now the case where di(L) �= ⊥. di(L) describes the ideal situ-
ation to which L must comply whereas sfc(L) describes the actual situation.
The similariry between the actual situation and the ideal situation can be
evaluated with well known similarity measures for finite sets such as the jac-
card measure. We define the degree of legality of a set of literal L with respect
to the rulebases R and D as

δ(L) =
|sfc(L) ∩ di(L)|
|sfc(L) ∪ di(L)|

.

6 A more general characterization for legal sets

Let L,R,D,Lit be respectively a set of literals, a descriptive rulebase, a de-
ontic rulebase and the set of all literals appearing in these sets. Let LitD be
the set of obligated literals i.e. l ∈ LitD if and only if o(l) ∈ Lit. The issue we
investigate in this section is, given a consistent set of literals L, in case it is not
legal, which legal sets of literals, if any, could be proposed as ”legalisations”
for it. A model for L with respect to R∪D is defined as being any consistent
set L = cu(LD, L) of literals with LD ⊆ LitD such that:
(1) sfc(mathcalL) is D-consistent and
(2) for any l ∈ LD there is Ll ⊆ LD such that l ∈ ω(sfc(L�, R ∪ D)) where
L� = cu(Ll, L)

Proposition 3. Let L be a consistent set of descriptive literals. The legalized
set obtained by deontic inference when defined is a model for L.

Proof. The legalized set given by deontic inference is L = λ(k+1)(L) =
cu(ω(∆(k+1)), λ(k)(L)) for some k ∈ N . We put LD = ∆(k+1) = cu′(∆(k), ω(o(sfc(L)))).

10 El-Hassan Bezzazi

L is D-consistent since it is the legalization of L by di. On the other hand,
property (2) is satisfied since the sequence (∆)i∈[0,k] is an increasing chain.

a>o(c)

b>o(!c)

there is no model for {a, b}.
a>o(!b)

b>o(!a)

{a, !b}, {!a, b}and{!a, !b} are models for {a, b}. Indeed, the last one for ex-
ample is the result for cu({!a, !b}, {a, b}), on the other hand sfc({!a, !b}) =
{!a, !b} and !a ∈ sfc({!a, b}) = {!a, b, o(!a)} and !b ∈ sfc({a, !b}) = {a, !b, o(!b)}

6.1 Examples

We comment in this paragraph some examples on the use of deontic inference
and legal sets.

No smoking

Consider a building where smoking is forbidden. However, smoking is allowed
in the room number 4 of this building.

room4 > building;

building > o(!smoking);

room4 > !(o(!smoking));

smoking > pollution;

The sets {room4, smoking}, {room4, !smoking}, {building, !smoking} and
{room4, building, smoking} are legal sets. The set{building, smoking} is an
illegal set and its legalization yields {building, !smoking}.
Note that both of M∞ = {building, !smoking, !pollution} and M∈ =
{building, !smoking, pollution} are models for R ∪ D. Indeed sfc((L1)) =
{building, !smoking, !pollution}.

Consider the set L = {building, smoking}. sfc(L,R ∪ D) is not D-
consistent. Let L = cu(!smoking, L) = {building, !smoking}.
L = {building, !smoking, o(!smoking)} is D-consistent.

Privacy

Let bob privacy denote personal data of Bob. Agency A is not allowed to have
access to Bob privacy unless Bob is okay. If it happens that Agency A did
have access to Bob privacy, it is committed not to communicate it to others.
Note that as long as the information cannot be erased from his mind, there
must be a rule in the rulebase asserting that no obligation can be made to
change this state. Corrective actions as sanctions may be prescribed in this
case. This is an example of the so-called contrary-to-duty norms in deontic
logic where violation of some obligations must be tolerated in favor of other
appropriate obligations which become operative.

On some inferences based on stratified forward chaining 11

agency_A > o(!bob_privacy);

agency_A bob_okay > !o(!bob_privacy);

agency_A bob_privacy > !o(!bob_privacy);

agency_A bob_privacy > o(!communicate);

agency_A bob_privacy !bob_okay> o(sanction);

Cyclic

A simple example of a cyclic case is the following one where D states that
light must be on if it was off and the switch pressed and similarly must be off
if it was off and the switch pressed.

light press > o(!light)

!light press > o(light)

Considering L = {light, press} as our starting set of literals, the legalisa-
tion of L by the first elementary deontic inference gives {!light, press}, the
following step gives {light, press} which shows the starting of a cyclic infer-
ence. This is explained by the fact that the literal press hide some crucial
information to put the light on or off. Actually it should be replaced by two
literals press0 and press1 for stating respectively the facts of putting off and
putting on the light.There is no model for L. This example shows a need
to enrich the language by the concept of action to deal with discrete event
systems.

7 Conclusion

The first purpose of this paper was to introduce an effective implementation
of inference engines based on a non-monotonic logic. Our system enjoys of the
conceptual simplicity of systems based on propositional logics. As a matter of
fact the examples given in the literature to introduce and motivate the con-
cerns of non-monotonic logics are mainly written in a propositional language,
this is why we restrict our definitions to propositional logics in addition to
the fact that interesting classical expert systems based on propositional logics
do exist and are effectively used. However, we project to investigate on the
use of a kind of first order predicate logics as in prolog clauses for writing
the knowledge base rules. A methodology should also be investigated to help
define the specificity of rules with respect to each other during the rulebase
construction. The second part of this paper investigated the use of deontic
literals to handle normative statements. It was noticed that a set of literals
may have several sets as candidates for its legalization in the interpretation
structure and that the legalization preferred in some cases by deontic inference
was severe in comparison to other possible legalizations. This issue must be
investigated further in order to make the interpretation more adequate for a
possible completness theorem to hold. Another promising issue is to consider
the concept of action in the language as long as the system encompass the
concept of change in the inferred literals.

12 El-Hassan Bezzazi

References

1. Bezzazi, E-H, Revision and Update based on Stratified Forward Chaining in
Frontiers in Belief Revision, edited by Mary-Anne Williams and Hans Rott, 2001
Kluwer Academic Publishers. (2001) 315–332

2. Bezzazi, E-H, Specific Stratified Forward Chaining, Proceedings of the Inter-
national Conference on Artificial Intelligence, Las Vegas, Nevada, USA, (2000)
1455–1460

3. Bezzazi, E-H, Workflows et Systèmes experts dans l’administration électronique,
Communication au Colloque International Administration électonique et qualité
des préstations administratives, Lille, France, 11/19/2004

4. The official site of PHP: http://www.php.net
5. Horty, J., Thomason, R., Touretzky, D., A skeptical theory of inheritancein non-

monotonic networks, Artificial Intelligence, 42 (1990) 311–348
6. Horty, J., Nonmonotonic foundations for deontic logic, In Nute, D., ed., Defeasible

Deontic Logic. Kluwer. 17–44.
7. Makinson D., Van Der Torre L., Input-output logics, Journal of Philosophical

Logic, vol. 29, 2000, p. 383-408
8. Prakken, H., Two Approaches to the Formalisation of Defeasible Deontic Rea-

soning, Studia Logica 57 (1), pp. 73-90, 1996.
9. Van Der Torre L., Violated obligations in a defeasible deontic logic, In A.Cohn

(ed.), Proceedings of the Eleventh European Conference on Artificial Intelligence
(ECAI’94), pages 371-375, John Wiley & Sons, 1994

10. Wieringa R.J., MeyerJ.-J.Ch., Applications of Deontic Logic in Computer Sci-
ence: A concise Overview, In Deontic Logic in Computer Science, pp 17-40, John
Wiley & Sons, Chichester, England, 1993

11. Von Wright G.H., An Essay in Deontic Logic and the General Theory of Action,
Acta Philosophica Fennica, Fasc. 21. North-Holland, 1968.

