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Abstract

We propose an inference algorithm based on forward chaining for handling in-
consistencies that may occur in a program containing general and exceptional
rules. We called this inference process stratified forward chaining because it
is based on an ordered stratification of the set of literals appearing in the
knowledge base. Given such a stratification, elementary forward chaining
steps are achieved along its strata starting from the first one which is taken
to be the input set of literals (the basic facts). The literals generated this
way are combined in such a way that the specific information is priviliged
over less specific one when they conflict each other. Actually this kind of
inference generalizes the skeptical inference in unambigious inheritance sys-
tems for which we prove it is consistent. We consider in this context some
of the properties relative to preferential logic and change operators where

the consequence operation is a nonmonotonic operation as it is the case with
Stratified Forward Chaining.



1 Introduction

In this work we investigate some of the properties of nonmonotonic logic
which were established using classical logic as being the object language in
a less rich framework but yet enough expressive to consider some interesting
situations. Pieces of knowledge are represented as literals and rules. The
inference engine we propose to represent the underlying logic of the agent
is based on an ordered stratification of the set of literals appearing in the
knowledge base which consists of a finite set of rules. Given such a stratifica-
tion, elementary forward chaining steps are achieved along its strata starting
from the first one which is taken to be the input set of literals (the basic
facts). The literals generated this way are combined in such a way that
the specific information is privileged over less specific one when they conflict
each other. Forward chaining allows for efficient computations as it is the
case with inheritance systems which are known to be efficient nonmonotonic
systems. An eminent property of this stratified forward chaining is Consis-
tency Preservation which makes the consistency of the consequences depend
only on the consistency of the set of literals which the inference operation
starts from.

This work was motivated by previous work on change operators and for-
ward chaining [3] which in its turn was motivated by the concern to extend
the set of conclusions obtained from a knowledge base and an exceptional
information by extending the so called ranked revision. Ranked revision con-
sists in computing the consequences of a set of literals by forward chaining
using a subset of the set of rules for which it is consistent. This subset
is computed in a precise way using forward chaining. However the conclu-
sions it yields miss many others one would intuitively expect by using some
kind of transitivity for instance [2]. It is precisely this kind of say cautious
transitivity that we are attempting to catch by Stratified Forward Chaining.

The paper is organized as follows: In section 2 we give basic definitions
and notations. In particular we recall the conditions usually required to be
satisfied by a consequence operation [8]. These conditions are relativized
to our framework and the Consistency Preservation condition is then intro-
duced. In section 3 we define an operation called cautious extension which
roughly speaking extends a consistent set of literals by those literals of an-
other set that preserve consistency. This operation is used to define in section
4 an inference operation called Stratified Forward Chaining. We describe in
this section how to construct the stratification upon which the inference is
based. In section 5 we emphasize the nonmonotonic properties of Stratified
Forward Chaining by relativizing to our framework the rules of preferential
logic [7]. In section 6 we show that given any syntactical consequence oper-



ation satisfying our relativized version of Inclusion, Idempotence, Cautious
Monotony and Consistency Preservation a natural revision operator is de-
fined which satisty our relativized version of AGM postulates for revision
operators. This revision operator makes a fundamental use of cautious ex-
tension. It is also shown that iterated revision is rather well supported. In
section 6 we do the same as in section 7 by considering update operators
instead of revision operators with respect to the Katsuno and Mendelzon
postulates [6]. In section 8 we show the consistency and the completeness of
stratified forward chaining for the well known inference in inheritance sys-
tems based on preemption when these systems are unambiguous [5]. Finally
in our conclusion we outline some of the issues that have drawn our attention
while writing this paper.

2 Preliminaries

Let At be the set of atoms. A literal is an atom or a negation of an atom.
The set of literals is Lit = At U ~At. However we may use a succession of
— before an atom which is to be reduced in the usual way by erasing the
occurrences of two successive .

A rule is a sentence of the shape ly,05,...,1, — [,11 where [; is a literal
fore=1,...,n+1.

A knowledge base is a finite set rules.

A set of literals is said to be consistent if it does not contain two opposite
literals, i.e. an atom and its negation.

The consistent part of a set of literals L is the set L which is obtained by
removing from L all opposite literals.

Let R and L be a finite set of rules and a finite set of literals respectively.

A rule r € R is L-fireable iff its body is in L.

We define the set of consequences of L by one step forward chaining with
respect to R as:

fe(R,L)y=LU{l e Lit:l,ls,...,1, — [is an L-fireable rule of R }.

Let {L;}ic., be the sequence defined by:
(i) Lo=L
(i) Lips = fe(R. L)
The closure of L by forward chaining w.r.t. R is defined by:

Cfc(R, L) — U’iewLi

Notice that it is easily established that if L' C C(R, L) then Cp(R, L U
L'y=Cpn(R, L)



In the AGM classical framework, the beliefs of the agent are represented
in a propositional language closed under the usual connectives =, A,V and —
and any consequence operation used to represent the underlying logic of the
agent is required to satisfy some conditions called Inclusion, Idempotence,
Monotony, Supraclassicality, Deduction and Compactness [8]. However when
we take instead of the propositional language a language which is closed only
under conjunction starting from literals and when we consider a syntactical
consequence operation C, Supraclassicality turns out to be equivalent to In-
clusion and Deduction doesn’t make sense anymore because of the absence
of implication as a connective in our language. Therefore in our framework
the conditions above reduce to the four conditions:

Inclusion: LCC(L)

Idempotence: C(C(L))=C(L)

monotony: C(L) CC(L') whenever L C L'

Compactness: If [ € C(L) then [ € C(L’) for some finite L' C L.

As a matter of fact forward chaining satisfy the four of these conditions!

and was investigated as a consequence operation underlying the definition of
syntactical revision operators in [3]. The main idea in this paper is to investi-
gate consequence operations which satisfy these conditions except eventually
the monotony condition (so it is a nonmonotonic consequence operation).
Instead we will require Cautious Monotony [8] and an additional condition
called Consistency Preservation:

Cautious Monotony: If L C C(L') then C(L") CC(LUL')

Consistency Preservation: If L is consistent then C(L) is consistent.

Notice that when C satisfies Inclusion then Consistency Preservation is
equivalent to saying that L is consistent iff C(L) is consistent. In the sequel
we will refer to a consequence operation that satisfies Inclusion, Idempo-
tence, Cautious Monotony and Consistency preservation as an admissible
consequence operation. It is easily established that if C satisfies Inclusion,
Idempotence and Cautious Monotony then it also satisfies the Cut property
and hence the property of cumulativity:

Cut: If L C C(L') then C(L U L') C C(L')
Cumulativity:If L C C(L') then C(L') =C(L U L’)

!Compactness is true for any syntactic consequence when the set of rules is finite as
long as propositional calculus is concerned which will be always the case in this paper.



3 Cautious extension

We will use in the sequel of this paper an operation on sets of literals called
cautious extension. This is a simple and yet a fundamental operation for
the stratified forward chaining as well as for the revision operation we shall
define. Cautious extension denoted by & is the non commutative binary
operation on sets of literals defined by:

Lol =LU(l'—{lel' :-lel})

So L @ L' is the extension of L by literals of L’ that are not opposite to
literals in L. It can also be written as:

N

Lel' =LU(LUL)

Some of the properties of this operation are listed in the following lemma.
Their proof is quite straightforward.

Lemma 1 (Properties of @) The following properties hold for any sets of
literals L, L', L":

(i) LCL@L

(i) Lo L' CLUL

(iii) & is associative: (L L)S L' =L& (L& L")

(i) If L' C L& L then I' C L& (I L")

(v) If L' U L" is consistent then (L& L')U L" = (LUL")& L'

(vi) If (L & L) U L" is consistent then (L & L'YU L" = (LU L")&@ L'

Proof.

(i) and (ii) are immediate by definition of L & L'

(iii) We show only one inclusion namely (L & L) & L" C L& (L' & L"),
the other inclusion has a similar proof.

letle(LeL)sd L.

Ifle Lthenle L& (L & L") else necessarily =l ¢ L and if [ € L’ then
le '@ L"andsole L (L' L") Ifle L”andl ¢ LUL then =l ¢ L'
otherwise =l € L & L' and then [ ¢ (L& L')& L”. But then [ € L' & L” and
since-l ¢ L,le L (L@ L")

(iv)let ' C L L"andl e /. Ifl e Lthenle L (L& L"). Ifl ¢ L
then necessarily [ € L” and =l ¢ L. Now since [ € L' & L” and =l ¢ L,
le L (L’ L"). Sol! C L& (L& L") Conversely, let L' be a set of
literals such that L' C L@ (L' & L") and l € L'. Ifl € Lthenl e L& L" else
necessarily [ € L' & L”

(v) This is easily seen.



i) (LB LYUL" = LUl —{lel':~leL}UL'=(LUL")U
L'—{l e l’: =l e L} Since (L& L)UL"is consistent by hypothesis
the set {Il € L : =l € L"} is empty and we can write (L & L) U L" =
(LULMYUL —{lel':=lelL}—{lel' :—=lelL"} which can be written
again (LG L)UL" = (LUL"YUL'—{l€ L' : ~l € (LUL")} = (LUL") L' W

4 Stratified forward chaining

Definition 2 (stratification) Let R be a non-empty set of rules. Let Lit(R)
be the set of literals that appear in R. We say that the sequence (Sy,...,5,) is

a stratification for R iff it is a partition of Lit(R) such that if 1,15, ..., 1, — 1

is a rule of R then: Yk € [1..p] : stratum(ly) < stratum(l) where stratum(l) =
v iff Ll € 5;. R is said to be stratified iff its set of stratifications s not empty.

A stratification is said to be based on a set of literals L iff it is a stratification

for R/ L which is the subset of R that consists of all C.(R, L)-fireable rules

of R?.

Definition 3 (ordering) We now define the decreasing lexicographical or-
dering < on the set of stratifications augmented by the empty sequence € of
a stratified set of rules.

(i) e < X for any stratification ¥,

(i) if ¥ = (S1,...,5,) and X' = (5'y,...,S]) are two non empty stratifica-
tions then X < X' iff S",CSy and Sy # S’y or Sy = 5"y and (Sy,...,S,) <
(S'2,...,9))

Proposition 4 Let R be a stratified set of rules. The ordering < over its
stratifications has a least element.

Proof. We are going to give an algorithm that computes a stratification
which we shall prove is the least stratification w.r.t. <. H

Definition 5 (best stratification) The best stratification of a stratified set
of rules R ts the least stratification of R according to <.

We will denote the best stratification of a stratified set of rules R by
U(R) = (S1(R),..., 5u(R))

It is a simple fact that if R is stratified then so is R/L



4.1 Computing the best stratification of a stratified set
of rules

We give in this subsection an algorithm that assigns to the literals appearing
in R the rank of their stratum. The definition of the function stratum is
extended to sets of literals as stratum(L) = {stratum(l) : | € L}. head(A)
is the set of literals that appear in the head of a rule of A.

Algorithm:

Input: A non empty set of rules R={l; —l:1<i<n}

Output: the stratification of R if it is stratified

let A=R

for all 1€Lit(A) let stratum(1l)=0

let h=1

repeat

for all 1€Lit(A) if 1¢head(A) then set stratum(1l)=h

Let Ap={L—1€ A: max(stratum(L))=h and min(stratum(L))#0}

set A=A —A; and set h=h+1

until A, is empty

if A is empty then

%make the last stratum¥

for all 1€Lit(R) if stratum(1l)=0 then set stratum(l)=h

%define the stratification

for all je[1..h] set S;={1€Lit(R):stratum(l)=j}

else R is not stratified.

Proposition 6 The algorithm above computes the least stratification of R
w.r.t. <.

Proof. (sketch of proof) The repeat loop terminates because at each step of
the loop Ay, is set to a subset of A which cardinal is strictly decreased if Ay
is not empty by setting A to A — Ay, If after the repeat loop A is not empty
then it contains precisely those rules that prevent the stratification by forming
cycles. If it is empty then it is easy to see that the sequence (Si,...,S)
computed by the algorithm is a partition of Lit(R) since each literal of Lit(R)
has been assigned a unique stratum by the algorithm. It is also easy to see
that it is a stratification since given a rule [y,l3,...,[, — [ of R all of the
literals of its body are assigned a stratum in the algorithm before [. Indeed,
for the current set of rules A, this assignment is done for the literals that do
not appear as a head of a rule. Now we show that it is the best stratification.
Let (S],...,S5)) be some stratification of R. It is easy to see that S| C 5.
If S1# S| we are done, otherwise let k£ > 1 be the least integer s.t. Sy# S},



and let [ be a literal in S},. We denote by head™'(l) the set of rules r of R s.t.
head(r) = [. Since (S7,...,5)) is a stratification body(head™ (1)) C U1<i<; 5!
for some j < k. So body(head (1)) C Ui<i<;S; by hypothesis. Now the
algorithm runs precisely s.t. j =k — 1 since [ ¢ Uj<i<;5;. Sol € Sj41 = Sy,

Thus S, C S, and (S,...,5,) < (5,...,5,) A

Remark 1 In the sequel we shall abbreviate for convenience fe(R, L), Cr.(R, L),
and S;(R/L), to respectively fe(L),Cs(L), and S;(L) as long as no ambigu-
ity is encountered. We will also use the following notations: Sc;41(L) =

S<i(L) = Uigj<iSi(L), and Ssi(L) = Sxiti(L) = Uicj<n Si(L).

Definition 7 (Stratified forward chaining) Let R and L be respectively
a set of rules and a set of literals. We define the stratified forward chaining
of L with R, denoted Cs(L) in two steps.
First we define the sequence (L) = (Si(L),...,S,(L)) by:
Si(L)y=1L
Siti(L) = fc(gsi(L)ﬂSSi(L))fori =1,...,n—1 where Sgi(L) = Di<j<iS;(L)
Then we put:

Cs(L) = S<n(L) = 1<i<nSi(L)

Remark 2 [t is easy to see that given a stratified set of rules R and a set
of literals L, by definition Stratified Forward Chaining satisfies the Inclusion
and the Consistency Preservation condition and therefore the only case where
Cs(L) is inconsistent is when L is inconsistent. Notice also that if | € Cs(L)
and stratum(l) = p then | € @193])5}([/).

Lemma 8 If I’ C Lit(R/L) then R/(LU L') = R/L

Proof. R/(L U L) consists of all Cp(L U L')-fireable rules of R. Since
L' C Lit(R/L) and Lit(R/L) = C(R, L) we have L' C Cp(L). So Cp(L U
L'y=Cp(L) and then R/LUL = R/L A

Remark 3 Restraining the stratification to R/L when computing Cr.(L) in-
stead of the stratification of R is a technical point. If we just use the strat-
ification of R, this computation may be complicated by literals which are ir-
relevant for the information in L and which alter the stratification based on
L. Consider for example R = {a — b,a’ — b,a — =b,c — ¢/, — =b} and
L ={a,d'}. The stratification for R yields S; = {a,d’,c}, Sy ={b,'} and
Sy ={=b} while the stratification based on L yields two strata, S1 = {a,a’}
and Sy ={b, —b}.

Lemma 9 Ifl € C,(L) then S;(LUI) = S;(L) fori=2,...n



Proof. Suppose stratum(l) = k. S;(LUI) = /.]?-C/(S<Z'(L Ul)NS«(LUl))
for i+ = 2,...,n. Since by the previous lemma R/(L Ul) = R/L we have:
SALUIL) = fe(Soi(L Ul NSe(L)) for i = 2,.

case 1 = 2: By definition we have Sl(L U l) = LUl so Sy(LUl) =

fc(S<1(LUl)ﬂS<1( ) = fc(LUlﬂSl( ). If k> 2 then fe(LUINS (L)) =
fe(Si(L) N Si(L)) = Sa(L). .

Suppose the equality S;(LUl) = S;(L) true for 2 < < p with p < n and

let us prove it is also true for p + 1.We have S,y (L U ) = fe(S<,(LUI)N
S<,(L U 1)) and by induction hypothesis:
Spa(LU0) = Fel(Ergszp (D) U D) N Sep(L). Tk > p then Syia(L U
) = fc(@}gjgij(L) NS<,(L)). Itk < p thtzn [ € @1§j§p§j(L) since
[ € D1<i<kSi(L) by the remark above and @®1<i<xSi(L) C B1<j<pS;(L). So in
both cases we have S, (L Ul) = S,11(L) B

Proposition 10 If L' C C,(L) then S;(LU L") = Si(L) fori=2,...,n

Proof. The property is trivially true when L' = ().

Suppose the property true for any set L/ C C(L) of Cardmahty k and let
us prove that it is also true for L' Ul when [ € Cs(L) = C5(L U L"). We have
S{(LUL'Ul)=S;(LUL') fori=2,..,n by the previous lemma and then
Si(LUL'Ul)=S;(L) for i =2,....,n by hypothesis B

5 Connection with nonmonotonic logics

In this section we check some of the properties of nonmonotonic logic as
stated by preferential logics |7]. We are interested in literals one can infer
from the set of rules R according to the inference relation defined by L |~; L’

iff 1 C Cy(L).

Definition 11 The properties called Reflevivity, And, Cautious Monotony
and Cut for an inference relation |~ are given respectively by the following
rules:



REF

LL

LI L~ L
AND

LI L~ L
M T

LUl L' L~ L
cur = L||~L”|

Proposition 12 The inference relation |~gsatisfies REF, AND,CM and
CUT.

Proof.

REF and AND are easily established.

CM: Suppose L" C Cy(L) and, without loss of generality, that L"NL = (.
By definition, Cs(L U L") = B1<i<uS:(L U L"). Then by proposition 10
Cs(LUL"y=(LUL") & (@Qsisngi([/)). Now by 1 (v) we have Cs(LUL") =
(L& (@2995}([/))) U L"” since L" C @2995}([/) given that @2995}([/) is
consistent by construction. So C,(L U L") = Cy(L) U L" = Cy(L). Thus if
L' CCy(L) and L" C Cy(L) then L' C C(LU L") = Cs(L).

CUT: Suppose that L' C Cs(LU L") and L” C Cs(L). We have just seen
in CM above that in this case Cs(L U L") = Cy(L). So L' C Cy(L) M

The following corollary shows that the stratified forward chaining satis-
fies the Idempotence property and therefore it is an admissible consequence

operation.
Corollary 13 C,(L) = C,(C,s(L))

Proof. In our proof of CM we have stated that if L” C C(L) then Cy(L U
L")y = Cs(L). So Cs(LUC(L)) = Cs(L) because Cs(L) C Cs(L) but we have
also Cs(L U Cs(L)) = Cs(Cs(L)) because L C Cy(L) M

6 Connection with revision theory

Instead of taking the propositional logic for representing the beliefs of the
agent and instead of considering the classical consequence to be the logic
of the agent as in AGM framework, we investigate an approach to belief
revision where beliefs are expressed as literals and rules (pure Horn clauses)



and the underlying logic is some admissible consequence operation C (i.e.
satisfying the four properties of the introduction Inclusion, Idempotence,
Cautious Monotony and Consistency preservation) e.g. stratified forward
chaining.

We define the absolute revision of a set of literals L by another set of
literals L' as follows

Loll=L'a L

Actually the revision operation should apply to a set of literals closed
by the underlying consequence relation. In our setting we should focus on
the definition of the operation C(L) * L’. In the definition we are to give for
this operator the set L in C(L) is distinguished from the rest of the literals
of C(L) as being its generator, a similar differenciation is done in [9]. The
operator * is defined by

C(L)xL'=C(Lo L)

Similarly, we define the expansion operation of the knowledge base C(L)
by the set of literals L as:

C(L)+ L' =C(LU L)

The postulates we are about to give now ensure in particular that the
revision of C(L) by L’ coincides with its expansion by the same set when
they are consistent to each other. These postulates constitute a relativized
version to our framework of the classical revision postulates. We call them
syntactical revision postulates. e is an operation that takes as argument
a couple of sets of literals. the first set is closed under the consequence
operation of interest and represents the belief set to be revised by the second
set. The result of this operation is a new belief set.

(SR1) L' CC(L)el’

(SR2) If C(L) U L' is consistent, then C(L)eL' =C(L) + L'

(SR3) If I is consistent then C(L)e L’ is also consistent

(SR4) If (C(L)eL')UL" is consistent then C(L)e(L'UL") = (C(L)eL')+
L//

Proposition 14 The operation * salisfies the syntactical revision postulates.

Proof. SR1: L' C L'& L C C(L'& E) = C(L)* L' by the Inclusion property.
SR2: If C(L)U L' is consistent, then Lo L' = L'UL and C(L) + L' =
C(LULY). So C(L)+ L' =C(LoL')=C(L) L.

10



SR3: C(L)«x L' =C(L' & Z) is consistent iff L' @ L is consistent by
the Consistency Preservation property and this is true iff L’ is consistent by
definition of cautious extension.

SR4: Suppose (C(L)* L')U L” = C(L o L") U L" is consistent. Since
(L' E) U L" is consistent by the Consistency Preservation property we have
(LolYUL"=(L'a L)UL" = (UL & L =Lo(L'UL") by virtue of
lemma 1 (vi). So C(L)* (L'UL")=C(Lo(L'UL")=C((LolL")UL")and
then C(L)« (LU L")y =C(Lo L")+ L"=(C(L)« L")+ 1" M

6.1 Iterated revision

The four relativized postulates proposed by Darwiche and Pearl [4] to account
for the iterated belief change are given below for a revision operation e defined
as above.

(SR5) If L' C L” then (C(L)eL')eL"” =C(L)eL"

(SR6) If L' U L" is inconsistent, then (C(L)eL')eL"” = C(L)eL"

(SR7) If L/ CC(L)eL" then L' C (C(L)eL )oL”

(SR8) If =l ¢ C(L)eL" and [ € L' then = ¢ (C(L)eL')eL"

Proposition 15 Supposing that all of L, L' and L" are consistent the re-
vision operation * satisfies three of the four relativized postulates above and

fails to satisfy (SR6).

N

Proof. SR5: Indeed (C(L)xL')+L" = C(L"®(L' © L)) = C(L"® (LB L)) =
C(L" @ L)y@® L)and so (C(L)* L")« L"=C(L"®L)=C(L)*L".

SR6: This rule is not satisfied. Take L, L’ and L” to be respectively
{t},{b, s}, {—s} for example and consider R = (). Clearly L'U L" is inconsis-
tent and (C(L) = L")« L" = {t,b,—s} and C(L) x L = {t,—s}. This rule is
actually counterintuitive for this example if we think of ¢ as tweety, b as bird
and s as singing in that there is no reason to reject b.

SRT: Suppose L' CC(L)« L”, then L' U L” is consistent by Consistency
Preservation. (C(L)* L")« L" =C(Lo(L'o L") =C((L"® L")®& L) =C((L"U
L'Y& L). So by the lemma 1 (v) (C(L)* L") L”" =C((L"& L)U L") and then
(C(L)x L")« L" =C(L"® L) by Cumulativity since L' CC(L)+xL" =C(L"& L)
by hypothesis.

SR8: Suppose =l € (C(L)* L'y« L" =C(L" & (L'® L)) and [ € L.
Then by Consistency Preservation =l € L”. So =l € L"” @ L and then
sleC(l"aLy=C(L)*L"

11



Remark 4 A property satisfied by * and which has not been proposed as a
postulate for iterated revision which generally deals with different operators
is relative associativity:

(SR9) (C(L)* L")+ L" =C(L)* (L' o L")

Indeed, (C(L)+ L'y« L" =C(L" & (L'® L)) =C((L" & L")& L) and so
C(L)y« LY« L"=C(L)x(L"&®& L')=C(L)*(L'oL") N

7 Connection with update theory

We consider in this section our relativized version of the postulates proposed
by Katsuno and Mendelzon [6] to characterize the operation of updating a
knowledge base. Here again as with the revision operation and for the same
reasons we have dropped the postulate concerning the syntax independence.
We have also dropped from the original setting two postulates (the two last
ones) which deal with disjunctive formulas since in our setting formulas are
only conjunction of literals. Consider an operation ¢ that takes as argument
a couple of sets of literals. The first set represents the data base to be
updated by the second data set. The result of this operation is a new data
base.o is said to be a syntactical update operator iff it satisfies the following
postulates:

(SUL) I cC(Lo L)

(SU2) If L’ C C(L) then C(L o L") =C(L)

(SU3) If both L and L’ are consistent then L o L' is also consistent.

(SU4) If (Lo L')UL" is consistent then C(Lo(L'UL")) CC((LoL")UL")

(SU4’) If (Lo L')U L" is inconsistent then so is C((L o L") U L")

(SU5) Suppose both of L o L' and L o L” are consistent then if L” C
C(LolL')yand L' CC(Lo L") then C(Lo L")y =C(Lo L")

We now check that the absolute revision operator o defined above satisfies
these postulates when C is a syntactical consequence operation that satisfies
the four properties above.

Proposition 16 The operator o defined by Lo L' = L' & L is a syntactical
update operator

Proof.

SUL: I/ C C(LoL')=C(L)*L"is an immediate consequence of (R1)
above.

SU2: Suppose L' C C(L). It follows that L o L’ = L U L’ and then
C(LolLl")y=C(LUL") =C(L) since C is cumulative.

12



SUS3: This is trivial since Lo L/ = L' @ L is consistent iff I/ is consistent.

SU4: This is an immediate consequence of (SR4).

SU4’: This is immediate from the property of consistency preservation
enjoyed by C.

SUS5: If L” CC(Lol')yand L' CC(LolL"”)then C(LolL’) =C((LoL")UL")
and C(Lo L") =C((Lo L")U L") by the property of cumulativity enjoyed by
C. Now if Lo L’ and Lo L" are supposed consistent then all of (Lo L") U L”,
(LoL”)UL" and L'UL" are consistent and hence (Lo L'YUL"” = (LoL')oL" =
Lo(L'olLl"y=Lo(L'UL") and similarly (Lo L”"YU L' = (Lo L")o L' =
Lo(L"oL"y=Lo(L"UL")andsoC(LoL'y=C(Lo(L'’UL"))=C(LolL") M

8 Connection with inference in inheritance
systems

Definition 17 A set of rules I' is an inheritance system (or inheritance
network) iff all of its rules (or links) are of the shape | — 1" where | is a
positive literal and for any positive literal | € lit(I'), -l ¢ }vc(l) A path over
I' is a finite sequence {l; — lip1 }1<icn henceforth denoted as ly — 1y — ... —
lnt1(n > 1) where all of the literals are positive except possibly the last. Two
rules are said to be contradictory iff they have the same body and opposite
heads. An inheritance network I is said to be non contradictory iff it does
not contain contradictory rules.

Definition 18 1. If [ '€ ' then 'l =1

2. Let o =1 — 01— 11 = U be a path in U, then I' E o iff

G 'El—=0o =1

(ii) L = U'el

(i) [ - -l"¢T

(iv) for any node l"” € lit(I') such that ' El — 7 = 1" and " — =’ €

[ there is a node ly such that ' E | — 71 — lyp — 79 — " and
lo — .

Let |~rbe the inference relation defined on lit(I') by [ op I" iff ' E | —
o — [' for some (possibly empty) path o. Non contradictory inheritance
networks enjoy the soundness property [5]:

Proposition 19 If ' is a non contradictory inheritance net then:
Liop U = 1 pep =l

13



Definition 20 The inheritance network I is said to be unambiguous iff it is
non contradictory and:
(lhrlyandly—=1"el)= (Lper -l 1 epl”).

The following proposition states that stratified forward chaining is coher-
ent with the inference relation defined by Horty et al. [5] when the underlying
net is unambiguous.

Proposition 21 Let I' be a non ambiguous inheritance network and let |~rbe
the inference relation defined on lit(I') byl op U iff TE 1l — o = 1’ for some
(possibly empty) path o, then | p I' iff I' € Cs(l) and | £ I’

Proof. [ being fixed the proof is done by induction on stratum(l’). If [ o I’
or I" € Csp(l) then stratum(l’) > 2. (base case) Suppose stratum(l’) = 2
then necessarily [ — I’ € I and so [ j~r I’ by definition of |~r. On the other
hand ' € }vc(l) since I' is non contradictory. Now Cy.(l) = Ulgigngi(l) with
Si(l) = {1} and So(1) = fe(Si(H)NS1(1)) = fe(l) because S1(1) = Si(1) = {1}.
So I € Sy(1) and therefore I' € S;(1) U So(l) C Cype(l).

(induction step) Suppose that the equivalence ( |~p I"iff I" € Cgp(1) and [ £ 1/
holds for all I’ such that stratum(l’) < p with p > 2. (=) Consider an {"” such
that [ jor I” and stratum(l”) = p+1. We have I' E |l — o — [" for some non
empty path ¢ = 01 — [’. Let then o be such a path with I’ s.t. stratum(l’) is
minimal. This impliesthat ' E{ — o and I" — [ € I'. Since stratum(l') <p
and [ pr I" we have I" € Csp(l). Let k be the least integer such that
I' € Si(l) (we have then k < stratum(l')). Then {" € }vc(ggk(l) N S<k(l))
unless o — =" € T for some [, € Sgk(l) N S<x({). If this were the case then
lo € Csp(l) and stratum(ly) < k < p. Then by induction hypothesis [ |~ lo.
Now by the definition above for inference in inheritance nets there exists a
literal [; such that ' F [ — 7y — {; = 79 — lp and [; — [ for some paths
71 and 3. Notice then that [ j~r [; and Iy — " with stratum(ly) < k <
stratum(l’) which contradicts the fact that stratum(l’) is minimal. Thus
P& Fe(Saill) N S<h(l) = Sena(l) € Corl)

(<) Conversely suppose I” € Csp(l) and | # [” then there is a rule
lo = 1" el with [y € Sgk(l) N S<x(l) and stratum(ly) < p + 1 minimal. So
lo € Cs.(1) and by induction hypothesis [ ~r lo. Now since I' is unambiguous
[ pr " unless [ ~p —0". 1If this were the case then there is a node [y
such that ' F [ — 7y = [ = 79 = [y and [; — —I”. We have then
by induction hypothesis | p~r [y since stratum(ly) < stratum(ly) < p+ 1
and [, € S, (1) with k < stratum(l;). Now =" € }vc(ggkl(l) N S<i, (1)
since ky < stratum(ly) and then =" € }vc(gskl(l) N S<i (1)) C Cyp(l) since
ki < stratum(ly) < stratum(=l") but we have supposed I" € Csp(l) so
necessarily { ~r " B
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9 Conclusion

In this paper, we begun the investigation of a special kind of consequence
operations by strengthening the classical definition of such an operation.
These consequence operations enjoy the Consistency Preservation condition
which reduces the requirements on the theory inferred to requirements on
the generator of the theory. In particular we presented one such consequence
operation named stratified forward chaining which is close to reasoning over
inheritance nets. Nevertheless still much work has to be done. In this respect
we list some of the issues for future work:

o Compare different stratified forward chaining with respect to the dif-
ferent stratifications they are based on.

o Investigate the combining of ranked revision and revision with stratified
forward chaining.

¢ Define and investigate revision operators starting as we did in this paper
from absolute revision but in the more general framework of propositional
logic.

o Investigate the extension to the predicate case.

o Investigate the addition of priorities to the rules.
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