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AbstractWe propose an inference algorithm based on forward chaining for handling in-consistencies that may occur in a program containing general and exceptionalrules. We called this inference process strati�ed forward chaining because itis based on an ordered strati�cation of the set of literals appearing in theknowledge base. Given such a strati�cation, elementary forward chainingsteps are achieved along its strata starting from the �rst one which is takento be the input set of literals (the basic facts). The literals generated thisway are combined in such a way that the speci�c information is priviligedover less speci�c one when they con�ict each other. Actually this kind ofinference generalizes the skeptical inference in unambigious inheritance sys-tems for which we prove it is consistent. We consider in this context someof the properties relative to preferential logic and change operators wherethe consequence operation is a nonmonotonic operation as it is the case withStrati�ed Forward Chaining.



1 IntroductionIn this work we investigate some of the properties of nonmonotonic logicwhich were established using classical logic as being the object language ina less rich framework but yet enough expressive to consider some interestingsituations. Pieces of knowledge are represented as literals and rules. Theinference engine we propose to represent the underlying logic of the agentis based on an ordered strati�cation of the set of literals appearing in theknowledge base which consists of a �nite set of rules. Given such a strati�ca-tion, elementary forward chaining steps are achieved along its strata startingfrom the �rst one which is taken to be the input set of literals (the basicfacts). The literals generated this way are combined in such a way thatthe speci�c information is privileged over less speci�c one when they con�icteach other. Forward chaining allows for e�cient computations as it is thecase with inheritance systems which are known to be e�cient nonmonotonicsystems. An eminent property of this strati�ed forward chaining is Consis-tency Preservation which makes the consistency of the consequences dependonly on the consistency of the set of literals which the inference operationstarts from.This work was motivated by previous work on change operators and for-ward chaining [3] which in its turn was motivated by the concern to extendthe set of conclusions obtained from a knowledge base and an exceptionalinformation by extending the so called ranked revision. Ranked revision con-sists in computing the consequences of a set of literals by forward chainingusing a subset of the set of rules for which it is consistent. This subsetis computed in a precise way using forward chaining. However the conclu-sions it yields miss many others one would intuitively expect by using somekind of transitivity for instance [2]. It is precisely this kind of say cautioustransitivity that we are attempting to catch by Strati�ed Forward Chaining.The paper is organized as follows: In section 2 we give basic de�nitionsand notations. In particular we recall the conditions usually required to besatis�ed by a consequence operation [8]. These conditions are relativizedto our framework and the Consistency Preservation condition is then intro-duced. In section 3 we de�ne an operation called cautious extension whichroughly speaking extends a consistent set of literals by those literals of an-other set that preserve consistency. This operation is used to de�ne in section4 an inference operation called Strati�ed Forward Chaining. We describe inthis section how to construct the strati�cation upon which the inference isbased. In section 5 we emphasize the nonmonotonic properties of Strati�edForward Chaining by relativizing to our framework the rules of preferentiallogic [7]. In section 6 we show that given any syntactical consequence oper-1



ation satisfying our relativized version of Inclusion, Idempotence, CautiousMonotony and Consistency Preservation a natural revision operator is de-�ned which satisfy our relativized version of AGM postulates for revisionoperators. This revision operator makes a fundamental use of cautious ex-tension. It is also shown that iterated revision is rather well supported. Insection 6 we do the same as in section 7 by considering update operatorsinstead of revision operators with respect to the Katsuno and Mendelzonpostulates [6]. In section 8 we show the consistency and the completeness ofstrati�ed forward chaining for the well known inference in inheritance sys-tems based on preemption when these systems are unambiguous [5]. Finallyin our conclusion we outline some of the issues that have drawn our attentionwhile writing this paper.2 PreliminariesLet At be the set of atoms. A literal is an atom or a negation of an atom.The set of literals is Lit = At [ :At. However we may use a succession of: before an atom which is to be reduced in the usual way by erasing theoccurrences of two successive :.A rule is a sentence of the shape l1; l2; : : : ; ln ! ln+1 where li is a literalfor i = 1; : : : ; n+ 1.A knowledge base is a �nite set rules.A set of literals is said to be consistent if it does not contain two oppositeliterals, i.e. an atom and its negation.The consistent part of a set of literals L is the set ~L which is obtained byremoving from L all opposite literals.Let R and L be a �nite set of rules and a �nite set of literals respectively.A rule r 2 R is L-�reable i� its body is in L.We de�ne the set of consequences of L by one step forward chaining withrespect to R as:fc(R;L) = L [ fl 2 Lit : l1; l2; : : : ; ln ! l is an L-�reable rule of R g.Let fLigi2! be the sequence de�ned by:(i) L0 = L(ii) Li+1 = fc(R;Li)The closure of L by forward chaining w.r.t. R is de�ned by:Cfc(R;L) = [i2!LiNotice that it is easily established that if L0 � Cfc(R;L) then Cfc(R;L [L0) = Cfc(R;L) 2



In the AGM classical framework, the beliefs of the agent are representedin a propositional language closed under the usual connectives :;^;_ and!and any consequence operation used to represent the underlying logic of theagent is required to satisfy some conditions called Inclusion, Idempotence,Monotony, Supraclassicality, Deduction and Compactness [8]. However whenwe take instead of the propositional language a language which is closed onlyunder conjunction starting from literals and when we consider a syntacticalconsequence operation C, Supraclassicality turns out to be equivalent to In-clusion and Deduction doesn't make sense anymore because of the absenceof implication as a connective in our language. Therefore in our frameworkthe conditions above reduce to the four conditions:Inclusion: L � C(L)Idempotence: C(C(L)) = C(L)monotony: C(L) � C(L0) whenever L � L0Compactness: If l 2 C(L) then l 2 C(L0) for some �nite L0 � L:As a matter of fact forward chaining satisfy the four of these conditions1and was investigated as a consequence operation underlying the de�nition ofsyntactical revision operators in [3]. The main idea in this paper is to investi-gate consequence operations which satisfy these conditions except eventuallythe monotony condition (so it is a nonmonotonic consequence operation).Instead we will require Cautious Monotony [8] and an additional conditioncalled Consistency Preservation:Cautious Monotony: If L � C(L0) then C(L0) � C(L [ L0)Consistency Preservation: If L is consistent then C(L) is consistent.Notice that when C satis�es Inclusion then Consistency Preservation isequivalent to saying that L is consistent i� C(L) is consistent. In the sequelwe will refer to a consequence operation that satis�es Inclusion, Idempo-tence, Cautious Monotony and Consistency preservation as an admissibleconsequence operation. It is easily established that if C satis�es Inclusion,Idempotence and Cautious Monotony then it also satis�es the Cut propertyand hence the property of cumulativity:Cut: If L � C(L0) then C(L [ L0) � C(L0)Cumulativity:If L � C(L0) then C(L0) = C(L [ L0)1Compactness is true for any syntactic consequence when the set of rules is �nite aslong as propositional calculus is concerned which will be always the case in this paper.3



3 Cautious extensionWe will use in the sequel of this paper an operation on sets of literals calledcautious extension. This is a simple and yet a fundamental operation forthe strati�ed forward chaining as well as for the revision operation we shallde�ne. Cautious extension denoted by � is the non commutative binaryoperation on sets of literals de�ned by:L� L0 = L [ (L0 � fl 2 L0 : :l 2 Lg)So L � L0 is the extension of L by literals of L0 that are not opposite toliterals in L. It can also be written as:L� L0 = L [ (L̂ [ L0)Some of the properties of this operation are listed in the following lemma.Their proof is quite straightforward.Lemma 1 (Properties of �) The following properties hold for any sets ofliterals L;L0; L00:(i) L � L � L0(ii) L� L0 � L [ L0(iii) � is associative: (L� L0)� L00 = L� (L0 � L00)(iv) If L0 � L� L00 then L0 � L� (L0 � L00)(v) If L0 [ L00 is consistent then (L� L0) [ L00 = (L [ L00)� L0(vi) If (L � L0) [ L00 is consistent then (L � L0) [ L00 = (L [ L00)� L0Proof.(i) and (ii) are immediate by de�nition of L � L0(iii) We show only one inclusion namely (L � L0) � L00 � L � (L0 � L00),the other inclusion has a similar proof.let l 2 (L� L0)� L00:If l 2 L then l 2 L� (L0 � L00) else necessarily :l =2 L and if l 2 L0 thenl 2 L0 � L00 and so l 2 L � (L0 � L00). If l 2 L00 and l =2 L [ L0 then :l =2 L0otherwise :l 2 L�L0 and then l =2 (L� L0)� L00. But then l 2 L0� L00 andsince :l =2 L, l 2 L � (L0 � L00)(iv) let L0 � L� L00 and l 2 L0. If l 2 L then l 2 L� (L0 � L00). If l =2 Lthen necessarily l 2 L00 and :l =2 L. Now since l 2 L0 � L00 and :l =2 L,l 2 L � (L0 � L00). So L0 � L � (L0 � L00): Conversely, let L0 be a set ofliterals such that L0 � L� (L0�L00) and l 2 L0. If l 2 L then l 2 L�L00 elsenecessarily l 2 L0 � L00(v) This is easily seen. 4



(vi) (L � L0) [ L00 = L [ L0 � fl 2 L0 : :l 2 Lg [ L00 = (L [ L00) [L0 � fl 2 L0 : :l 2 Lg. Since (L � L0) [ L00 is consistent by hypothesisthe set fl 2 L : :l 2 L00g is empty and we can write (L � L0) [ L00 =(L [ L00) [ L0 � fl 2 L0 : :l 2 Lg � fl 2 L0 : :l 2 L00g which can be writtenagain (L�L0)[L00 = (L[L00)[L0�fl 2 L0 : :l 2 (L[L00)g = (L[L00)�L04 Strati�ed forward chainingDe�nition 2 (strati�cation) Let R be a non-empty set of rules. Let Lit(R)be the set of literals that appear in R. We say that the sequence hS1; : : : ; Sni isa strati�cation for R i� it is a partition of Lit(R) such that if l1; l2; : : : ; lp ! lis a rule of R then: 8k 2 [1::p] : stratum(lk) < stratum(l) where stratum(l) =i i� l 2 Si: R is said to be strati�ed i� its set of strati�cations is not empty.A strati�cation is said to be based on a set of literals L i� it is a strati�cationfor R=L which is the subset of R that consists of all Cfc(R;L)-�reable rulesof R2.De�nition 3 (ordering) We now de�ne the decreasing lexicographical or-dering � on the set of strati�cations augmented by the empty sequence " ofa strati�ed set of rules.(i) " � � for any strati�cation �,(ii) if � = hS1; : : : ; Sni and �0 = hS01; : : : ; S 0pi are two non empty strati�ca-tions then � � �0 i� S01�S1 and S1 6= S01 or S1 = S01 and hS2; : : : ; Sni �hS02; : : : ; S0piProposition 4 Let R be a strati�ed set of rules. The ordering � over itsstrati�cations has a least element.Proof. We are going to give an algorithm that computes a strati�cationwhich we shall prove is the least strati�cation w.r.t. � :De�nition 5 (best strati�cation) The best strati�cation of a strati�ed setof rules R is the least strati�cation of R according to �.We will denote the best strati�cation of a strati�ed set of rules R by�(R) = hS1(R); : : : ; Sn(R)i2It is a simple fact that if R is strati�ed then so is R=L5



4.1 Computing the best strati�cation of a strati�ed setof rulesWe give in this subsection an algorithm that assigns to the literals appearingin R the rank of their stratum. The de�nition of the function stratum isextended to sets of literals as stratum(L) = fstratum(l) : l 2 Lg: head(�)is the set of literals that appear in the head of a rule of �.Algorithm:Input: A non empty set of rules R={Li !li:1�i�n}Output: the stratification of R if it is stratifiedlet �=Rfor all l2Lit(�) let stratum(l)=0let h=1repeatfor all l2Lit(�) if l=2head(�) then set stratum(l)=hLet �h={L!l2 �: max(stratum(L))=h and min(stratum(L))6=0}set � = ���h and set h=h+1until �h is emptyif � is empty then%make the last stratum%for all l2Lit(R) if stratum(l)=0 then set stratum(l)=h%define the stratification%for all j2[1..h] set Sj={l2Lit(R):stratum(l)=j}else R is not stratified.Proposition 6 The algorithm above computes the least strati�cation of Rw.r.t. � :Proof. (sketch of proof) The repeat loop terminates because at each step ofthe loop �h is set to a subset of � which cardinal is strictly decreased if �his not empty by setting � to ���h. If after the repeat loop � is not emptythen it contains precisely those rules that prevent the strati�cation by formingcycles. If it is empty then it is easy to see that the sequence hS1; : : : ; Shicomputed by the algorithm is a partition of Lit(R) since each literal of Lit(R)has been assigned a unique stratum by the algorithm. It is also easy to seethat it is a strati�cation since given a rule l1; l2; : : : ; lp ! l of R all of theliterals of its body are assigned a stratum in the algorithm before l. Indeed,for the current set of rules �, this assignment is done for the literals that donot appear as a head of a rule. Now we show that it is the best strati�cation.Let hS01; : : : ; S0ni be some strati�cation of R. It is easy to see that S01 � S1.If S1 6= S01 we are done, otherwise let k > 1 be the least integer s.t. Sk 6= S 0k6



and let l be a literal in S 0k. We denote by head�1(l) the set of rules r of R s.t.head(r) = l. Since hS01; : : : ; S0ni is a strati�cation body(head�1(l)) � [1�i�jS0ifor some j < k: So body(head�1(l)) � [1�i�jSi by hypothesis. Now thealgorithm runs precisely s.t. j = k � 1 since l =2 [1�i�jSi. So l 2 Sj+1 = Sk.Thus S0k � Sk and hS1; : : : ; Sni � hS01; : : : ; S 0piRemark 1 In the sequel we shall abbreviate for convenience fc(R;L); Cfc(R;L);and Si(R=L), to respectively fc(L); Cfc(L); and Si(L) as long as no ambigu-ity is encountered. We will also use the following notations: S<i+1(L) =S�i(L) = [1�j�iSj(L), and S>i(L) = S�i+1(L) = [i<j�nSj(L).De�nition 7 (Strati�ed forward chaining) Let R and L be respectivelya set of rules and a set of literals. We de�ne the strati�ed forward chainingof L with R, denoted Cs(L) in two steps.First we de�ne the sequence ��(L) = h �S1(L); : : : ; �Sn(L)i by:�S1(L) = L�Si+1(L) =ffc(�S�i(L)\S�i(L)) for i = 1; :::; n�1 where �S�i(L) = �1�j�i �Sj(L)Then we put: Cs(L) = �S�n(L) = �1�i�n �Si(L)Remark 2 It is easy to see that given a strati�ed set of rules R and a setof literals L, by de�nition Strati�ed Forward Chaining satis�es the Inclusionand the Consistency Preservation condition and therefore the only case whereCs(L) is inconsistent is when L is inconsistent. Notice also that if l 2 Cs(L)and stratum(l) = p then l 2 �1�i�p �Si(L):Lemma 8 If L0 � Lit(R=L) then R=(L [ L0) = R=LProof. R=(L [ L0) consists of all Cfc(L [ L0)-�reable rules of R. SinceL0 � Lit(R=L) and Lit(R=L) = Cfc(R;L) we have L0 � Cfc(L). So Cfc(L [L0) = Cfc(L) and then R=L [ L0 = R=LRemark 3 Restraining the strati�cation to R=L when computing Cfc(L) in-stead of the strati�cation of R is a technical point. If we just use the strat-i�cation of R; this computation may be complicated by literals which are ir-relevant for the information in L and which alter the strati�cation based onL. Consider for example R = fa ! b; a0 ! b; a ! :b; c ! c0; c0 ! :bg andL = fa; a0g. The strati�cation for R yields S1 = fa; a0; cg, S2 =fb; c0g andS3 =f:bg while the strati�cation based on L yields two strata, S1 = fa; a0gand S2 =fb;:bg.Lemma 9 If l 2 Cs(L) then �Si(L [ l) = �Si(L) for i = 2; :::; n7



Proof. Suppose stratum(l) = k. �Si(L [ l) = ffc(�S<i(L [ l) \ S<i(L [ l))for i = 2; :::; n. Since by the previous lemma R=(L [ l) = R=L we have:�Si(L [ l) =ffc(�S<i(L [ l) \ S<i(L)) for i = 2; :::; ncase i = 2: By de�nition we have �S1(L [ l) = L [ l, so �S2(L [ l) =ffc(�S�1(L[ l)\S�1(L)) =ffc(L[ l\S1(L)): If k � 2 thenffc(L[ l\S1(L)) =ffc( �S1(L) \ S1(L)) = �S2(L):Suppose the equality �Si(L[ l) = �Si(L) true for 2 � i � p with p < n andlet us prove it is also true for p + 1.We have �Sp+1(L [ l) = ffc(�S�p(L [ l) \S�p(L [ l)) and by induction hypothesis:�Sp+1(L [ l) = ffc((�1�j�p �Sj(L) [ l) \ S�p(L)): If k > p then �Sp+1(L [l) = ffc(�1�j�p �Sj(L) \ S�p(L)). If k � p then l 2 �1�j�p �Sj(L) sincel 2 �1�i�k �Si(L) by the remark above and �1�i�k �Si(L) � �1�j�p �Sj(L): So inboth cases we have �Sp+1(L [ l) = �Sp+1(L)Proposition 10 If L0 � Cs(L) then �Si(L [ L0) = �Si(L) for i = 2; :::; nProof. The property is trivially true when L0 = ;.Suppose the property true for any set L0 � Cs(L) of cardinality k and letus prove that it is also true for L0 [ l when l 2 Cs(L) = Cs(L [L0). We have�Si(L [ L0 [ l) = �Si(L [ L0) for i = 2; :::; n by the previous lemma and then�Si(L [ L0 [ l) = �Si(L) for i = 2; :::; n by hypothesis5 Connection with nonmonotonic logicsIn this section we check some of the properties of nonmonotonic logic asstated by preferential logics [7]. We are interested in literals one can inferfrom the set of rules R according to the inference relation de�ned by L j�s L0i� L0 � Cs(L).De�nition 11 The properties called Re�exivity, And, Cautious Monotonyand Cut for an inference relation j� are given respectively by the followingrules:
8



REF L j� LAND L j� L0 L j� L00L j� L0 [ L00CM L j� L0 L j� L00L [ L00 j� L0CUT L [ L0 j� L00 L j� L0L j� L00Proposition 12 The inference relation j�ssatis�es REF;AND;CM andCUT.Proof.REF and AND are easily established.CM: Suppose L00 � Cs(L) and, without loss of generality, that L00\L = ;.By de�nition, Cs(L [ L00) = �1�i�n �Si(L [ L00). Then by proposition 10Cs(L[L00) = (L[L00)� (�2�i�n �Si(L)). Now by 1 (v) we have Cs(L[L00) =(L� (�2�i�n �Si(L))) [ L00 since L00 � �2�i�n �Si(L) given that �2�i�n �Si(L) isconsistent by construction. So Cs(L [ L00) = Cs(L) [ L00 = Cs(L). Thus ifL0 � Cs(L) and L00 � Cs(L) then L0 � Cs(L [ L00) = Cs(L):CUT: Suppose that L0 � Cs(L [ L00) and L00 � Cs(L). We have just seenin CM above that in this case Cs(L [ L00) = Cs(L). So L0 � Cs(L)The following corollary shows that the strati�ed forward chaining satis-�es the Idempotence property and therefore it is an admissible consequenceoperation.Corollary 13 Cs(L) = Cs(Cs(L))Proof. In our proof of CM we have stated that if L00 � Cs(L) then Cs(L [L00) = Cs(L): So Cs(L[Cs(L)) = Cs(L) because Cs(L) � Cs(L) but we havealso Cs(L [ Cs(L)) = Cs(Cs(L)) because L � Cs(L)6 Connection with revision theoryInstead of taking the propositional logic for representing the beliefs of theagent and instead of considering the classical consequence to be the logicof the agent as in AGM framework, we investigate an approach to beliefrevision where beliefs are expressed as literals and rules (pure Horn clauses)9



and the underlying logic is some admissible consequence operation C (i.e.satisfying the four properties of the introduction Inclusion, Idempotence,Cautious Monotony and Consistency preservation) e.g. strati�ed forwardchaining.We de�ne the absolute revision of a set of literals L by another set ofliterals L0 as follows L � L0 = L0 � ~LActually the revision operation should apply to a set of literals closedby the underlying consequence relation. In our setting we should focus onthe de�nition of the operation C(L) � L0: In the de�nition we are to give forthis operator the set L in C(L) is distinguished from the rest of the literalsof C(L) as being its generator, a similar di�erenciation is done in [9]. Theoperator � is de�ned by C(L) � L0 = C(L � L0)Similarly, we de�ne the expansion operation of the knowledge base C(L)by the set of literals L as: C(L) + L0 = C(L [ L0)The postulates we are about to give now ensure in particular that therevision of C(L) by L0 coincides with its expansion by the same set whenthey are consistent to each other. These postulates constitute a relativizedversion to our framework of the classical revision postulates. We call themsyntactical revision postulates. � is an operation that takes as argumenta couple of sets of literals. the �rst set is closed under the consequenceoperation of interest and represents the belief set to be revised by the secondset. The result of this operation is a new belief set.(SR1) L0 � C(L)�L0(SR2) If C(L) [ L0 is consistent, then C(L)�L0 = C(L) + L0(SR3) If L0 is consistent then C(L)�L0 is also consistent(SR4) If (C(L)�L0)[L00 is consistent then C(L)�(L0[L00) = (C(L)�L0)+L00Proposition 14 The operation � satis�es the syntactical revision postulates.Proof. SR1: L0 � L0� ~L � C(L0� ~L) = C(L)�L0 by the Inclusion property.SR2: If C(L) [ L0 is consistent, then L � L0 = L0 [ L and C(L) + L0 =C(L [ L0). So C(L) + L0 = C(L � L0) = C(L) � L0.10



SR3: C(L) � L0 = C(L0 � ~L) is consistent i� L0 � ~L is consistent bythe Consistency Preservation property and this is true i� L0 is consistent byde�nition of cautious extension.SR4: Suppose (C(L) � L0) [ L00 = C(L � L0) [ L00 is consistent. Since(L0� ~L)[L00 is consistent by the Consistency Preservation property we have(L � L0) [ L00 = (L0 � ~L) [ L00 = (L0 [ L00) � ~L = L � (L0 [ L00) by virtue oflemma 1 (vi). So C(L) � (L0 [ L00) = C(L � (L0 [ L00)) = C((L � L0) [ L00) andthen C(L) � (L0 [ L00) = C(L � L0) + L00 = (C(L) � L0) + L006.1 Iterated revisionThe four relativized postulates proposed by Darwiche and Pearl [4] to accountfor the iterated belief change are given below for a revision operation � de�nedas above.(SR5) If L0 � L00 then (C(L)�L0)�L00 = C(L)�L00(SR6) If L0 [ L00 is inconsistent, then (C(L)�L0)�L00 = C(L)�L00(SR7) If L0 � C(L)�L00 then L0 � (C(L)�L0)�L00(SR8) If :l =2 C(L)�L00 and l 2 L0 then :l =2 (C(L)�L0)�L00Proposition 15 Supposing that all of L; L0 and L00 are consistent the re-vision operation � satis�es three of the four relativized postulates above andfails to satisfy (SR6).Proof. SR5: Indeed (C(L)�L0)�L00 = C(L00�(L̂0 � ~L)) = C(L00�(L0�L)) =C((L00 � L0)� L) and so (C(L) � L0) � L00 = C(L00 � L) = C(L) � L00:SR6: This rule is not satis�ed. Take L;L0 and L00 to be respectivelyftg; fb; sg; f:sg for example and consider R = ;. Clearly L0 [L00 is inconsis-tent and (C(L) � L0) � L00 = ft; b;:sg and C(L) � L00 = ft;:sg: This rule isactually counterintuitive for this example if we think of t as tweety, b as birdand s as singing in that there is no reason to reject b.SR7: Suppose L0 � C(L) � L00, then L0 [ L00 is consistent by ConsistencyPreservation: (C(L)�L0)�L00 = C(L� (L0 �L00)) = C((L00�L0)�L) = C((L00[L0)�L). So by the lemma 1 (v) (C(L) �L0) �L00 = C((L00�L)[L0) and then(C(L)�L0)�L00 = C(L00�L) by Cumulativity since L0 � C(L)�L00 = C(L00�L)by hypothesis.SR8: Suppose :l 2 (C(L) � L0) � L00 = C(L00 � (L0 � L)) and l 2 L0.Then by Consistency Preservation :l 2 L00. So :l 2 L00 � L and then:l 2 C(L00 � ~L) = C(L) � L00. 11



Remark 4 A property satis�ed by � and which has not been proposed as apostulate for iterated revision which generally deals with di�erent operatorsis relative associativity:(SR9) (C(L) � L0) � L00 = C(L) � (L0 � L00)Indeed, (C(L) � L0) � L00 = C(L00 � (L0 � L)) = C((L00 � L0) � L) and so(C(L) � L0) � L00 = C(L) � (L00 � L0) = C(L) � (L0 � L00)7 Connection with update theoryWe consider in this section our relativized version of the postulates proposedby Katsuno and Mendelzon [6] to characterize the operation of updating aknowledge base. Here again as with the revision operation and for the samereasons we have dropped the postulate concerning the syntax independence.We have also dropped from the original setting two postulates (the two lastones) which deal with disjunctive formulas since in our setting formulas areonly conjunction of literals. Consider an operation � that takes as argumenta couple of sets of literals. The �rst set represents the data base to beupdated by the second data set. The result of this operation is a new database.� is said to be a syntactical update operator i� it satis�es the followingpostulates:(SU1) L0 � C(L � L0)(SU2) If L0 � C(L) then C(L � L0) = C(L)(SU3) If both L and L0 are consistent then L � L0 is also consistent.(SU4) If (L�L0)[L00 is consistent then C(L�(L0[L00)) � C((L�L0)[L00)(SU4') If (L � L0) [ L00 is inconsistent then so is C((L � L0) [ L00)(SU5) Suppose both of L � L0 and L � L00 are consistent then if L00 �C(L � L0) and L0 � C(L � L00) then C(L � L0) = C(L � L00)We now check that the absolute revision operator � de�ned above satis�esthese postulates when C is a syntactical consequence operation that satis�esthe four properties above.Proposition 16 The operator � de�ned by L � L0 = L0 � ~L is a syntacticalupdate operatorProof.SU1: L0 � C(L � L0) = C(L) � L0 is an immediate consequence of (R1)above.SU2: Suppose L0 � C(L). It follows that L � L0 = L [ L0 and thenC(L � L0) = C(L [ L0) = C(L) since C is cumulative.12



SU3: This is trivial since L �L0 = L0� ~L is consistent i� L0 is consistent.SU4: This is an immediate consequence of (SR4).SU4': This is immediate from the property of consistency preservationenjoyed by C:SU5: If L00 � C(L�L0) and L0 � C(L�L00) then C(L�L0) = C((L�L0)[L00)and C(L �L00) = C((L �L00)[ L0) by the property of cumulativity enjoyed byC. Now if L �L0 and L �L00 are supposed consistent then all of (L �L0)[ L00,(L�L00)[L0 and L0[L00 are consistent and hence (L�L0)[L00 = (L�L0)�L00 =L � (L0 � L00) = L � (L0 [ L00) and similarly (L � L00) [ L0 = (L � L00) � L0 =L� (L00 �L0) = L� (L00[L0) and so C(L�L0) = C(L� (L0 [L00)) = C(L�L00)8 Connection with inference in inheritancesystemsDe�nition 17 A set of rules � is an inheritance system (or inheritancenetwork) i� all of its rules (or links) are of the shape l ! l0 where l is apositive literal and for any positive literal l 2 lit(�);:l =2 ffc(l). A path over� is a �nite sequence fli ! li+1g1�i�n henceforth denoted as l1 ! l2 ! :::!ln+1(n � 1) where all of the literals are positive except possibly the last. Tworules are said to be contradictory i� they have the same body and oppositeheads. An inheritance network � is said to be non contradictory i� it doesnot contain contradictory rules.De�nition 18 1. If l ! l0 2 � then � � l! l02. Let � = l ! �1 ! l1 ! l0 be a path in �, then � � � i�(i) � � l! �1 ! l1(ii) l1 ! l0 2 �(iii) l ! :l0 =2 �(iv) for any node l00 2 lit(�) such that � � l ! � ! l00 and l00! :l0 2� there is a node l0 such that � � l ! � 1 ! l0 ! � 2 ! l00 andl0 ! l0.Let j��be the inference relation de�ned on lit(�) by l j�� l0 i� � � l !� ! l0 for some (possibly empty) path �: Non contradictory inheritancenetworks enjoy the soundness property [5]:Proposition 19 If � is a non contradictory inheritance net then:l j�� l0 ) l j�� :l0 13



De�nition 20 The inheritance network � is said to be unambiguous i� it isnon contradictory and:(l j�� l0 and l0 ! l00 2 �)) ( l j�� :l00 , l j�� l00 ).The following proposition states that strati�ed forward chaining is coher-ent with the inference relation de�ned by Horty et al. [5] when the underlyingnet is unambiguous.Proposition 21 Let � be a non ambiguous inheritance network and let j��bethe inference relation de�ned on lit(�) by l j�� l0 i� � � l ! � ! l0 for some(possibly empty) path �, then l j�� l0 i� l0 2 Cs(l) and l 6= l0Proof. l being �xed the proof is done by induction on stratum(l0). If l j�� l0or l0 2 Csfc(l) then stratum(l0) � 2. (base case) Suppose stratum(l0) = 2then necessarily l ! l0 2 � and so l j�� l0 by de�nition of j��. On the otherhand l0 2ffc(l) since � is non contradictory. Now Csfc(l) = [1�i�n �Si(l) with�S1(l) = flg and �S2(l) =ffc( �S1(l)\S1(l)) =ffc(l) because �S1(l) = S1(l) = flg.So l0 2 �S2(l) and therefore l0 2 �S1(l) [ �S2(l) � Csfc(l):(induction step) Suppose that the equivalence l j�� l0 i� l0 2 Csfc(l) and l 6= l0holds for all l0 such that stratum(l0) � p with p � 2. ()) Consider an l00 suchthat l j�� l00 and stratum(l00) = p+1. We have � � l ! � ! l00 for some nonempty path � = �1 ! l0. Let then � be such a path with l0 s.t. stratum(l0) isminimal. This implies that � � l ! � and l0 ! l00 2 �. Since stratum(l0) � pand l j�� l0 we have l0 2 Csfc(l). Let k be the least integer such thatl0 2 �Sk(l) (we have then k � stratum(l0)). Then l00 2 ffc(�S�k(l) \ S�k(l))unless l0 ! :l00 2 � for some l0 2 �S�k(l) \ S�k(l): If this were the case thenl0 2 Csfc(l) and stratum(l0) � k � p. Then by induction hypothesis l j�� l0.Now by the de�nition above for inference in inheritance nets there exists aliteral l1 such that � � l ! �1 ! l1 ! � 2 ! l0 and l1 ! l00 for some paths�1 and � 2. Notice then that l j�� l1 and l1 ! l00 with stratum(l1) < k �stratum(l0) which contradicts the fact that stratum(l0) is minimal. Thusl00 2ffc(�S�k(l) \ S�k(l)) = �Sk+1(l) � Csfc(l):(() Conversely suppose l00 2 Csfc(l) and l 6= l00 then there is a rulel0 ! l00 2 � with l0 2 �S�k(l) \ S�k(l) and stratum(l0) < p + 1 minimal. Sol0 2 Csfc(l) and by induction hypothesis l j�� l0: Now since � is unambiguousl j�� l00 unless l j�� :l00. If this were the case then there is a node l1such that � � l ! � 1 ! l1 ! � 2 ! l0 and l1 ! :l00. We have thenby induction hypothesis l j�� l1 since stratum(l1) < stratum(l0) < p + 1and l1 2 �Sk1(l) with k1 � stratum(l1). Now :l00 2 ffc(�S�k1 (l) \ S�k1(l))since k1 < stratum(l0) and then :l00 2 ffc(�S�k1(l) \ S�k1(l)) � Csfc(l) sincek1 � stratum(l1) < stratum(:l00) but we have supposed l00 2 Csfc(l) sonecessarily l j�� l00 14



9 ConclusionIn this paper, we begun the investigation of a special kind of consequenceoperations by strengthening the classical de�nition of such an operation.These consequence operations enjoy the Consistency Preservation conditionwhich reduces the requirements on the theory inferred to requirements onthe generator of the theory. In particular we presented one such consequenceoperation named strati�ed forward chaining which is close to reasoning overinheritance nets. Nevertheless still much work has to be done. In this respectwe list some of the issues for future work:� Compare di�erent strati�ed forward chaining with respect to the dif-ferent strati�cations they are based on.� Investigate the combining of ranked revision and revision with strati�edforward chaining.� De�ne and investigate revision operators starting as we did in this paperfrom absolute revision but in the more general framework of propositionallogic.� Investigate the extension to the predicate case.� Investigate the addition of priorities to the rules.
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